Semisupervised Community Detection by Voltage Drops
نویسندگان
چکیده
منابع مشابه
extremal region detection guided by maxima of gradient magnitude
a problem of computer vision applications is to detect regions of interest under dif- ferent imaging conditions. the state-of-the-art maximally stable extremal regions (mser) detects affine covariant regions by applying all possible thresholds on the input image, and through three main steps including: 1) making a component tree of extremal regions’ evolution (enumeration), 2) obtaining region ...
Cell Detection Using Extremal Regions in a Semisupervised Learning Framework
This paper discusses an algorithm to build a semisupervised learning framework for detecting cells. The cell candidates are represented as extremal regions drawn from a hierarchical image representation. Training a classifier for cell detection using supervised approaches relies on a large amount of training data, which requires a lot of effort and time. We propose a semisupervised approach to ...
متن کاملOverlapping Community Detection by Local Community Expansion
Community structure is the key aspect of complex network analysis and it has important practical significance. While in real networks, some nodes may belong to multiple communities, so overlapping community detection attracts more and more attention. But most of the existing overlapping community detection algorithms increase the time complexity in some extent. In order to detect overlapping co...
متن کاملTransient IR Voltage Drops in CMOS-Based Power Distribution Networks
Decreased power supply levels have reduced the tolerance to voltage changes within power distribution networks in CMOS integrated circuits. High on-chip currents, required to charge and discharge large on-chip loads while operating at high frequencies, produce significant transient IR voltage drops within a power distribution network. Analytical expressions characterizing these transient IR vol...
متن کاملSemisupervised Multimodal Dimensionality Reduction
The problem of learning from both labeled and unlabeled data is considered. In this paper, we present a novel semisupervised multimodal dimensionality reduction (SSMDR) algorithm for feature reduction and extraction. SSMDR can preserve the local and multimodal structures of labeled and unlabeled samples. As a result, data pairs in the close vicinity of the original space are projected in the ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2016
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2016/9850927